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Abstract. The response of a complex system is usually very com-
plicated if it is perturbed by a sinusiodal driving force. We show,
however, that for every complex system there is a special aperiodic
driving force which produces a simple response. This special driving
force is related to a certain nonlinear differential equation. We pro-
pose to use the parameters of this differential equation to describe the
complexity of the system.

INTRODUCTION

Generalized dimensions, entropies, Lyapounov exponents [1] and approx-
imations of the flow vector field [2,3] are used to describe the periodic and
chaotic dynamics of nonlinear experimental systems. In addition to the pas-
sive observation of a nonlinear oscillator and the description of the measured
time series using statistical quantities, it is possible to characterize a non-
linear oscillator by an active method, namely by determining its response to
specific driving forces [4]. The output of the active method is usually the
numerical values of the parameters and the dimension of a differential equa-
tion or a map which models the dynamics of the system. These parameters
can be used in order to define classes of complexity [5]. Active methods, like
nonlinear resonance spectroscopy, are superior to passive methods because of
three reasons: First, a measurement of parameters of a system by an active
method can be done in the region of the state space of the system that is of
the most physical interest, in contrast to passive methods, which have access
only to those regions of the state space which are close to the attractors.
Second, the model can be used to control the dynamics of complex systems
(6,7]. Third, the active method is especially superior in those cases where
the che experimental system is a set of identical, weakly coupled oscillators
behaving incoherently. If one gets without a driving force a compound signal

*To appear in Quantitative Measures of Complex Dynamical Systems, edited by N.B.
Abraham, Plenum Press, New York, 1989

'Permanent address: National Center for Supercomputer Applications, University of
Illinois at Urbana-Champaign.




driving forces 2

of all oscillators, small and complicated due to interference, a strong response
emerges at resonance. At resonance every single oscillator is forced into co-
herent oscillation, synchronized by the driving force. In the next section we
show that the response of a nonlinear oscillator to certain aperiodic driving
forces can be several orders of magnitude larger than the response to sinu-
soidal perturbations and how to use this response in order to find a model of
the dynamics.

RESONANT PERTURBATIONS OF NONLINEAR
OSCILLATORS

In order to investigate resonant driving forces we consider in the following
a damped or conservative oscillation in a nonlinear Potential V (y):

oV (y,p)

5y = F(t)

g +mny+ (0.1)
where n > 0 is a friction constant and p are the parameters of the po-
tential. In order to calculate resonant driving forces, we integrate a goal

equation [7]:
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Fig. 1 illustrates the final energy E (T = 50) = .5y% + V (y, p) versus the pa-
rameters of the model of the potential V (z,ﬁ) = .5p 122 + .25p,z* + .01pax®,
where p; = p, = p3 = 1 are the parameters of the experimental system
and where the magnitude of the driving force has various values. The ini-
tial conditions are y = y = 0 and ¢ = ¢ = .02. At resonance, i.e. for
p1 = p2 = p3 = 1 the final energy is more than one order of magnitude larger
than the largest final energy due to a sinusoidal perturbation with the same
amplitude (Fnaz = 1).
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5)
scale= 510 tzala scale= 1.3 - 10°

F'na.z: =1 Fma:: =1
scale= 100 scale= 2 - 10*

Fig. 2 illustrates the ratio between the transfered and the reflected energy
versus the parameters of the model of the potential V (1:,5) = .5p1z? +
.25p,z* + .01paz®, where p; = p; = p3 = 1 are the paramcters of the ex-
perimental system and where the magnitude of the driving force has various
values. The initial conditions are y =y = 0 and = = & =~ .02.
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av 1',1_3.
5:+ﬁ(t):i:+——-5(;—)=0 (0.2)
where 7 (t) = n— (i;*g“% F ooz estimates the amplitude of the driving force

defined by F (¢) = (7 — 7 (t)) &. Due to the special choice of 7 (t) the ampli-
tude of the driving force is approximately constant. If p=py(t)=z(t)is
a solution of Eq. (0.1). For a large variety of systems this solution is stable
[6]. For y(t) = z(t) the energy transfer AE = [T F(t)ydt is positive for
all T and the reflected energy E, = JT F(t)§0© (—F (t)y) dt is zero, which is
its smallest value. © is the Heavyside step function. For p # p the reflected
energy is non zero and the energy transfer is much smaller (see Fig.l and

Fig.2).

NONLINEAR RESONANCE SPECTROSCOPY

The largest response emerges when the parameters of the model coincide
with the true parameters of the system (Figs. 1,2). Therefore the parame-
ters of the experimental system can be found by a systematic search for the
largest response. This method is equivalent to the usual linear resonance
spectroscopy for p; = 0. In the linear case the driving forces are sinu-
soidal perturbations and the corresponding resonance curves result. They
represent a cut through the shoulder of the nonlinear resonance peak in the
background. For large driving forces the maximum amplitude of the lin-
ear resonance curves is usually several orders of magnitude smaller than the
maximum amplitude of the nonlinear resonance curve. A general problem of
finding a model of a nonlinear system is the large number of parameters which
might be necessary. A systematic scan in the high dimensional parameter
space in order to find the maximum response is often too time consuming.
Therefore we propose the following systematic search: When a small driving
force is applied, the response is sensitive only to the linear parameter of the
model (see Fig. 1a). Therefore a small driving force can be used to determine
this parameter. If a moderate driving force is applied the response is se.si-
tive to the parameter of the next order, but is still insensitive to higher - rder
terms. By a systematic increase of the magnitude of the aperiodic driving
force the coefficients of a Taylor series of the flow vector field of the model
can be determined step by step.
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